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Numerical studies of two-dimensional, transonic flows of dense gases of retrograde
type, known as BZT gases, around thin airfoils are presented. The computations are
guided by a recent asymptotic theory of Rusak & Wang (1997). It provides a uniformly
valid solution of the flow around the entire airfoil surface which is composed of outer
and inner solutions. A new transonic small-disturbance (TSD) equation solver is
developed to compute the nonlinear BZT gas flow in the outer region around most
of the airfoil. The flow in the inner region near the nose of the airfoil is computed
by solving the problem of a sonic flow around a parabola. Numerical results of the
composite solutions calculated from the asymptotic formula are compared with the
solutions of the Euler equations. The comparison demonstrates that, in the leading
order, the TSD solutions of BZT gas flows represent the essence of the flow character
around the airfoil as computed from the Euler equations. Furthermore, guided by the
asymptotic formula, the computational results demonstrate the similarity rules for
transonic flows of BZT gases. There are differences between the self-similar cases that
may be related to the error associated with the accuracy of the asymptotic solution.
A discussion on the flow patterns around an airfoil at transonic speeds and at various
upstream thermodynamic conditions is also presented. The paper provides important
guidelines for future studies on this subject.

1. Introduction

Dense gases are described as ordinary single-phase vapours with moderate molec-
ular weight operating at pressures, densities, and temperatures around their cor-
responding thermodynamic critical values (p., p., T.). For example, gases such as
fluorocarbons (C,F,, 3N or C,F,,_4, with n normally greater than 10) or hydrocar-
bons (C,Hjy,.,, with n normally greater than 7) have large densities and complex
molecular structures along with a large number of degrees of freedom of motion.
Therefore, these gases have large heat capacities which may provide a significant heat-
to-mechanical energy exchange in closed-cycle power generation systems. In addition
to their inert character, the above properties make these gases excellent heat transfer
fluids in Rankine cycle turbomachinery (see Devotta & Holland 1985).

The flow of a dense gas ahead of the turbine stage of a power generation system
may reach high pressures and temperatures with near sonic speeds. Under these
conditions, the perfect gas law cannot adequately predict the thermodynamic and
dynamic properties of the gas and real gas effects should be considered. Improved
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equations of state such as the van der Waals (Moran & Shapiro 1992), the Redlich—
Kwong (1949), or the Martin—Hou (1955) models should be used for a more accurate
description of dense gas flows.

Among those working dense fluids, specific interest has developed in the dense
gases of retrograde type. In a certain range of pressures and temperatures, they
vaporize when being compressed and condense when being expanded. We particularly
investigate the gases that are characterized by relatively large specific heats (c,), known
as the Bethe—Zel’dovich-Thompson (BZT) fluids (see Bethe 1942; Zel’dovich 1946;
Zel'dovich & Raizer 1966; Thompson 1971; Thompson & Lambrakis 1973; and
Cramer & Tarkenton 1992). Recent research has shown that the physical behaviour
of dense gases of retrograde type can be significantly different from the classical
gas dynamics of perfect gases (see Cramer & Tarkenton 1992; Cramer & Fry 1993;
Kluwick 1993; and Schnerr & Leidner 1993). Therefore, the ability to understand
the complex phenomena that occur in compressible flows of dense gases and the
parameters that govern them are scientifically interesting and would be essential for
future utilization of these fluids in the design of advanced machinery and in aerospace
applications.

One of the main parameters commonly used to describe the influence of dense gas
effects is the thermodynamic property:

r=1+p<aa>.
a \dp ),

Here p, a, and s are the density, speed of sound, and specific entropy, respectively.
A similar parameter was first introduced by Duhem (1909). Due to its importance
in a wide range of flow problems, Thompson (1971) referred to this parameter as
the fundamental derivative of gasdynamics. This parameter may reflect the intrinsic
gasdynamics nonlinearity. For a perfect gas model, I' = (y 4+ 1)/2 is a constant and
greater than 1 (y is the ratio of specific heats, y > 1). For dense gases, I' is no
longer a constant and may become less than 1 or even negative in a certain range
of temperatures and pressures (see Bethe 1942; Zel'dovich 1946; and Thompson
1971). Fluids, in the single-phase regime, of retrograde type (the BZT fluids) are
characterized by I' < 0 in some range of densities and pressures (see figures 1 and
2 in Cramer & Tarkenton 1992). A list of commonly used dense fluids which are
employed as heat transfer fluids in energy systems or in Rankine cycle power systems,
such as the above mentioned high molecular weight hydrocarbons and fluorocarbons,
is given in Cramer (1989, 1991), Cramer & Tarkenton (1992), and Tarkenton &
Cramer (1993). An example of contours of constant I in a pressure—specific volume
(p—v) phase diagram, computed according to the van der Waals equation of state
with R/c, = 0.02, is shown in figure 1(a) (the Appendix provides the details of the
calculations of I'). The range of pressures and densities where I' < 0 is evident in
this figure.

In addition to I', there are two more nonlinear thermodynamic parameters of
interest, the second- and third-nonlinearity parameters:

or oA
A:p(ap>’ Z:p(ap)‘

Examples of contours of constant A4 and X in a p—v diagram, computed according to
the van der Waals equation of state with R/c, = 0.02, are shown in figures 1(b) and
1(c) (the Appendix provides the details of the calculations of these parameters). It
can be seen from figure 1 that, in the range of pressures and densities where turbines
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FIGURE 1. (a) Constant I', (b) constant A, and (c¢) constant X~ contours using
the van der Waals equation of state with R/c, = 0.02.

in a Rankine cycle usually operate, the parameters I, 4, and ~ may change from
positive to negative values. Figure 1 is used in the present numerical studies.

Transonic flows of BZT fluids around airfoils have recently been studied by Cramer
& Tarkenton (1992) and Tarkenton & Cramer (1993). They presented an extended
transonic small-disturbance theory for flows around thin airfoils of thickness ratio
0 < € < 1. The oncoming flow is near sonic, with Mach number M., ~ 1, and is
also characterized by small values of I', I',, ~0, as well as the second-nonlinearity
parameter A, A, ~0. The third-nonlinearity parameter, X, is considered to be of
order one, X, ~ O(1). The basic shape functions of the upper and lower surfaces
of the airfoil, F,;(x), as well as several similarity parameters relating M., ', A
and e were fixed. Using this special theory, Tarkenton & Cramer (1993) found a
significant increase of the critical Mach number in flows of the BZT fluids over airfoils.
Numerical solutions revealed substantial reductions in the strength of compression
shocks waves. A further benefit is an evident decrease of the pressure drag that was
found in the numerical study of Morren (1990) using the Euler equations and the
van der Waals equation of state. Although the van der Waals equation of state is
known to overestimate non-classical effects, it seems to be well suited to numerical
simulation of qualitative effects of dense gas flows.

Morren’s (1990) code is a modified version of Jameson & Yoon’s (1986) finite
volume code and it uses the flux splitting technique to capture shock waves. Her
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computations also revealed the special, non-classical behaviour of the BZT gases
which is the formation of expansion shock waves on the airfoil, where I' <0 ahead
of the shock wave. This interesting phenomenon indicates that the increase in the
speed of sound across the expansion shock wave is more than the increase in the
speed of the flow to maintain the Mach number behind the shock wave below 1. The
computations also show the appearance of a detached shock wave in front of the
airfoil although the Mach number in the far field is less than 1. This special behaviour
of the flow is, again, contrary to the perfect gas behaviour.

Transonic flow of a dense gas of retrograde type around the leading edge of a thin
airfoil with a parabolic nose has been studied by Rusak & Wang (1997). Asymptotic
expansions of the velocity potential function were constructed in terms of the airfoil
thickness ratio in an outer region around the airfoil and in an inner region near
the nose. The outer expansion consisted of the transonic small-disturbance theory
for the BZT gases, where a leading-edge singularity appears. Analytical expressions
were given for this singularity by constructing similarity solutions of the governing
nonlinear equation. The inner expansion accounted for the flow around the nose,
where a stagnation point exists. A boundary value problem was formulated in the inner
region. It involves the solution of an oncoming uniform sonic flow with zero values
of the fundamental derivative of gasdynamics (I" = 0) and the second-nonlinearity
parameter (A = 0) around a semi-infinite parabola at zero angle of attack. The
numerical solution of the inner problem resulted in a symmetric flow around the
nose. The outer and inner expansions were matched asymptotically, resulting in a
uniformly valid solution along the entire airfoil surface. In the leading terms, the flow
around the nose is symmetric and the stagnation point is located at the leading edge
for every transonic Mach number, small values of I' and A of the oncoming flow,
and any shape and small angle of attack of the airfoil. Furthermore, analysis of the
inner region in the immediate neighbourhood of the stagnation point revealed that
the flow there is purely subsonic and approaches critical conditions in the limit of
large (scaled) distances. This excludes the formation of shock discontinuities in the
nose region. It should be clarified that the theory of Rusak & Wang (1997) holds
only for the cases where M, is near 1 and I',,, 4, are near zero.

In the present paper we demonstrate the agreement between the special asymptotic
theory of Rusak & Wang (1997) and the numerical solutions of the Euler equations of
Morren (1990). The outline of the paper is as follows: the asymptotic theory of Rusak
& Wang (1997) is reviewed and the details needed to construct the uniformly valid
solution for the flow around the entire airfoil surface are provided (§2). A new tran-
sonic small-disturbance (TSD) equation solver is developed to compute the non-linear
BZT gas flow in the outer region around most of the airfoil (§3). Numerical results
of the composite solutions calculated from the asymptotic formula are compared
with the solutions of the Euler equations (§4). The comparison demonstrates that,
in the leading order, the TSD solutions of the BZT gas flows represent the essence
of the flow character computed from the Euler equations. Furthermore, guided by
the asymptotic formula, the computational results demonstrate the similarity rules
for transonic flow of BZT gases. The differences between the self-similar cases are
discussed. A discussion on the flow patterns around an airfoil at transonic speeds
and at various upstream thermodynamic conditions is also presented. It provides
important guidelines for future studies on this subject.

The TSD theory provides a special insight into the behaviour of solutions of the
Euler equations. The theory results in a simplified form of the Euler equations from
which the basic similarity relations between the various flow and thermodynamic
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parameters may be revealed. Such relations cannot be found from numerical simula-
tions using the Euler equations. These parameters help to guide the numerical studies
using both the small-disturbance theory and the Euler equations (see §4). Moreover,
the agreement found in this paper between the results from the two methods, which
are essentially independent of each other, provides a unique check on both methods,
although there are some important differences that are discussed in the paper (see
§4). One more advantage of using the TSD theory over the Euler computations is
the fact that no specific equation of state has to be coupled with the main equation
in studying the flow behaviour. The similarity parameters in the equation can be
computed by using any equation of state.

As mentioned above, the asymptotic theory holds for the limited range of upstream
thermodynamic conditions where I',, and 4, are around zero. However, in this range
of parameters the BZT gases change their nature from a classical behaviour to a
non-classical, retrograde gas behaviour. Significant changes in the flow pattern and
aerodynamic performance can be found by slightly changing the values of these
parameters in the above range (see §4.4). The TSD theory helps to unfold these
significant changes.

The results of this study may add to our understanding of the complicated physics
of compressible flows of dense gases. We expect that the BZT gases offer numerous
advantages in turbomachinery applications, because they have the potential of sup-
porting subsonic flow at a higher free-stream Mach number and/or blade angle of
attack without encountering any shock waves. This may also help to reduce boundary
layer flow separation caused by strong shock waves.

2. Mathematical model
2.1. Assumptions and basic equations

A steady, attached, compressible two-dimensional flow of dense gas around a thin
airfoil with a parabolic nose at a low angle of attack is considered in an (x, y)-plane
with unit vectors e, and e,. The airfoil’s shape is described by the equation B(x,y) =0
where 0 < x < ¢ and c is the airfoil’s chord. The flow far ahead of the airfoil is
uniform and is characterized by speed U,, in the x-direction, that is near the speed
of sound, and pressure, p.,, and density, p., on the order of the critical pressure and
density of the gas.

Since in high Reynolds number attached flows the boundary layer thickness is
relatively small compared to the airfoil thickness, the viscous effects may be neglected
and the flow can be considered as inviscid. The flow may be described by the
two-dimensional and steady Euler equations,

continuity: V- (pU) =0,
momentum: pU VU = —Vp, (1)
energy: h+ 1U? = constant,

and the entropy condition according to the second law of thermodynamics. Here h
is the flow local specific enthalpy, U is the local velocity vector, and U? = U - U.
The equation of state relating the thermodynamic properties should also be specified,
h = h(p, s). This relation may be described by the van der Waals equation of state or
any other relevant model such as the Redlich-Kwong or the Martin—Hou equations.

The flow has to satisfy the tangency (no penetration) condition at any point along
the airfoil surfaces, U - VB = 0 for every x and y on B(x,y) = 0. Far away from
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the airfoil, the flow has to decay to uniform flow conditions, specifically ahead of
the airfoil, i.e. U —» U,e,, p — p, and p — p,. The Kutta condition describing the
continuity of pressure and the tangency of the upper and lower streams at a sharp
trailing edge should be satisfied. Also, in order to have a single-valued solution, the
(x, y)-plane is cut along the slipstream that leaves the airfoil’s trailing edge to infinity.

From the momentum and energy equations (1) and the Gibbs relation (Moran &
Shapiro 1992)

dh =T ds+vdp, 2)

where s is the local specific entropy and v = 1/p is the specific volume, it can be
shown that

TVs=—U x Q. 3)

This is Crocco’s theorem for any gas. Here Q@ = V x U is the vorticity vector.
Multiplying (3) by U gives U - Vs = 0. This means that in continuous flow regions
the specific entropy is constant along a stream line, but it changes from one value to
another across a shock wave. Since the upstream flow is uniform and all stream lines
originate from there, we have s = s,, along stream lines ahead of a shock wave and
s = S, + As behind a shock wave. According to the second law of thermodynamics,
the change in entropy, As, must be positive.

Transonic flows are usually characterized by the appearance of relatively weak
shock waves. An estimation of the entropy jump across a weak shock wave (Thompson
1984 or Wang 1998) shows that

T[s] r

a2 6a° PE
For a perfect gas, it can be shown that I' = (y + 1)/2 = constant in the entire flow
field, where y is the ratio of specific heats, y = ¢,/c,, of the working fluid. Thus, the
specific entropy jump across a shock wave in a perfect gas is on the order of [p]°.
However, for some dense gases, such as the BZT gases, there may exist a range of
pressures and densities where I' and 4 have small values around zero (either positive
or negative). When I' is on the order of [p]*> and A is on the order of [p], it is
found that the specific entropy jump [s] across shock waves in these dense gases
is on the order of [p]° (see Thompson 1984). A steady, inviscid dense gas flow at
transonic speeds with small disturbances in the speed, pressure, density, and enthalpy
is characterized by much smaller changes of the specific entropy and the flow may be
considered, in the leading orders of the disturbances, as isentropic.

It should also be emphasized that, from Crocco’s relation, the change of entropy is
related to the change of vorticity. Since the change of entropy across a weak shock
in a BZT gas is on the order of [p]°, it is concluded that the change of vorticity is
also on the same order, i.e. to the leading order of disturbances the flow may also be
considered as irrotational.

PP’ +-- . (4)

2.2. Asymptotic theory
A thin airfoil with a parabolic nose is considered, where

B(x,y) =y —ecF, (x/c)=0 for 0<x<ec. (5)

Here ¢ is the airfoil’s chord and e is the thickness ratio, e < 1. The functions F,;(x/c)
represent the upper and lower surfaces, respectively. These shape functions are given
by

F,(x) = Ca(x/c) £ t(x/c)— Ox/c for 0 < x<c, (6)
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where Ca(x/c) is the camber line function, #(x/c) is the thickness distribution, ® = 0/e,
and 0 is the angle of attack. Also, t(0) = t(1) = 0 and Ca(0) = Ca(1) = 0. Near the
airfoil’s leading edge, y = i2ge\/c>x + --- where g is a constant related to the radius
of curvature of the parabolic nose.

The flow far ahead of the airfoil is assumed to be uniform at a speed U,, density
P, €ntropy s, speed of sound a,, and Mach number M, = U,/a, ~ 1. The
oncoming flow is also characterized by small values of the fundamental derivative
of gasdynamics (I',, ~ 0) and the second-nonlinearity parameter (A, ~ 0), and
the third-nonlinearity parameter of order 1 (X, ~ O(1)). As shown in the previous
subsection, to the orders of the disturbances in the pressure, density, and velocity
vector considered here, the flow may be taken as irrotational and isentropic, i.e.
s ~ s, and Q ~ 0 everywhere in the flow domain. The velocity potential field ®(x, y)
of the flow, where U = V& (@, is the axial speed and @, is the vertical speed), can
be described by the full potential-flow equation:

(@° — D) Dy — 20, DD, + (a° — D) Dy, = 0 (7)
and the energy equation:
h(p.s.) + 3 IVOI* = he + 5 US. (8)

Here, hy, = h(po,, S). Also, a = a(p,s,,) and p = p(p,s,). The energy equation relates
the disturbances in the speed of sound to those in @ through the thermodynamic
relations between a and h. The solution of (7) and (8) should satisfy the kinematic
tangency boundary condition on the airfoil surface:

V&-VB=0 on B=0. (9)

Also, disturbances must die out at upstream infinity, as x —» —oo: ¢, — U, and
@, — 0. The potential @ is allowed to jump along the cut from the airfoil’s trailing
edge to infinity due to the circulation around the airfoil.

Rusak & Wang (1997) have recently shown that the potential @ can be approxi-
mated by asymptotic expansions in an outer region, around most of the airfoil, where
the flow perturbations are small, and a small inner region, on the order of €, around
the nose of the airfoil where the flow approaches stagnation and the flow perturba-
tions are large. The matching between the two expansions results in a uniformly valid
approximate solution for the flow field around the entire airfoil:

gp(x,y;f’ M@,@,FQO,AO’D,ZU&) ~ UQCC{X: + ez/s(ﬁ(xaj);KaKr,KAazoc)
+€2 (X* + ¢0(X*, y*)) - (pc.p}' (10)

Here ¢ is the small-disturbance potential in the outer region and is determined by
the transonic small-disturbance (TSD) theory for the BZT gases,

(=K +2Kr s — K3 + 12..03) dsx = Py (11)
where
x ==

L y=2 5=y M2 =1—¢PK, I, =Ky, A, =K, (12)
C

This equation is a modified Karman-Guderley (K-G) equation (see also Kluwick
1993 and Tarkenton & Cramer 1993). The function ¢; should satisfy the following
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boundary and upstream conditions:
$3(%,04) = F (x) for 0<x<1,
q_ﬁx,qgi, —0 as X — —oo, (13)
¢s(1,07) = ¢(1,07).

In order to formulate a one-valued potential function ¢, we have ¢(x,0")—p(x,07) =
C for every X = 1, where C is the circulation around the airfoil. Note from (10) that
the pressure perturbation is O(e*3). From (4) and (12) we find that the entropy
change across any shock wave in the flow is O(¢?) and is indeed much smaller than
the changes in the velocity and pressure as assumed above.

Also in (10), x* = X/€?,y* = j/e* are the inner region variables, and ¢o(x*, y*) is a
solution of

2 2
<(C]l§v - (1 + ¢0x‘)2> ¢0x*x‘ - 2(1 + ¢0x‘)¢0y*¢0x*y* + <[(;320 - Qb(z)y-) ¢0y‘y‘ =0 (14)

with the energy equation
W (p,52) + 3 U2 (14 dox ) + ¢, ) = oo + 3 U2 (15)

Here, h" is the specific enthalpy in the inner region problem and the speed of
sound a(x",y") is calculated from the thermodynamic relation between a and h*. The
boundary condition over the airfoil surface becomes, in the inner region,

oy (x7, )" = +2gx" ) F ﬁ?(l + dow (x7, )" = +2gx" ) =0, (16)

The upstream condition for the inner problem is (o, Poy) — 0 as x* — —oo. The

problem given by (14)—(16) describes, in the (x*, y*)-plane, a sonic uniform flow with

speed a,e,- and I',, = A,, = 0 around a semi-infinite parabola surface: y* = i2g\/>?.
The common part of the potential,

(pc.p. =nXxy + ¢(Z,p.s (17)

is derived from the matching between the outer and inner expansions in an inter-
mediate region. This region, n(e), is chosen such that €> < n(e) < 1, and there,
x, = X/n(e), y, = y/n(e) are fixed in the limit e - 0, M, — 1,I',, — 0, 4., — 0. Also,

¢c.p. = 62/5E71/3)~)8/13f (6)7 (18)

where E = X, /3, & = x/7'%13 and f(¢) is given by the parametric representation:

L svas sy costa F(2, =514 sin’ o)
f(cx):—i (5) “ in10/13 10/13(9 _1.3.qn2 .\’ (19)
sin™/ o FIO/B(3,—3 5 5;sin” o)
26sin> aF(2,—1;3;sin® o) + 25 cos? o F(2,—1;1;sin’ o
fl) =i (533335007 a) Gbidisin) o0

16[sino F(2,—1;3;sin” o)]3/13

Here ¢; = 1.768163g2, —75.383226° < o < 75.383226°, and F(a, b;c;z) is the standard
hypergeometric function (Abramowitz & Stegun 1965).
From the composite solution (10), the relation (17), and the energy equation in (1),
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the specific enthalpy in the flow field may be approximated by

U2 P + P2
h=h, + -2 (1—-—>""y
T3 ( U2 )

= h?o + %Miai(l - (1 + ¢0x‘)2 - ¢(2)y* - 262/5 (1 + ¢Ox*) (él)’c - (Ec.p.f) + - )
= h*(X*a y*) - 62/5Mia§o (1 + ¢0x*) (q_ﬁli - q_sc.p.)’c)

—5(1=M2) a2 (1= (1 + dow)* — )+ - (21)
From (21), we find
_h—hy  W(X,y)—hy

Ch

az az
* * h - hC. .
+ (14 gow (x7,07) =2 + 0 1 = ME). - (22)

Here h*(x",y") and 1 + ¢o+(x",y") are the specific enthalpy and axial velocity com-
ponent in the inner flow problem, respectively. Also, (hrsp — h,)/a% = —€* 3¢5 is
the specific enthalpy change in the outer (TSD) flow problem and (h., — hy)/a% =
—eXSE-13372/13f. is the specific enthalpy change of the common part in the overlap
region.

Since the pressure is given by p = p(h,s,,) we can use (21) to derive an asymptotic
expansion for p:

p = pli) (22) ML (1 + o) (Brs — Beps) + -

= p*(X*’ y*) + p*(X*s y*)GZ/SMi;aczg (1 + ¢0x*) ((51‘? - éc.p.;’c) + - (23)

We use here the relation (dp/dh); = p*, which results from the Gibbs equation (2).
From the definition of the pressure coefficient, c¢,, we have

_P—Psx _P/Px—1
12U 3BM;

*

I
P

Here ¢,, p*, and (1 + ¢o.-) are the pressure coefficient, density, and axial velocity
component in the inner flow problem, respectively. Also, ¢,,q, = —2¢*°¢y5 is the
pressure coefficient in the outer (TSD) flow problem and ¢, , = —2¢*°E~'35~>/Bf, is
the common part of the pressure coefficient in the overlap region. Also, the parameter
B = p.d’ /pe.

Equations (22) and (24) show that both the specific enthalpy and pressure coefficient
at any point are composed of the nose effect and the airfoil small-disturbance
influence. As the leading edge of the airfoil is approached, (x,y) — 0 or 0 <
VX2 +y? < €’g’c, the common part of the specific enthalpy, h.,, or the common
part of the pressure coefficient, ¢, ,, cancel the nose singularity of the outer region.
Also, in this region, the axial velocity 1 + ¢, (x", y") is small and tends to zero near
the stagnation point. Therefore, the dominant terms in the leading-edge region are the
inner-region specific enthalpy, h”, and pressure coefficient, ¢,. As (x, y) increase beyond

Cp

:cp+

(1 + ¢0x’) (cpTSD - Cp(;'p.) + 0(64/5: |1 - Mczo|) (24)
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the leading-edge region, \/x2 + y? > €’g%c, the axial velocity 1 + ¢o.(x*,y*) and
density p*(x*,y")/ps approach 1. Also, the common part of the enthalpy and pressure
coeflicient tend to cancel the inner-region enthalpy, h", and pressure coefficient, c,,.
Therefore, the dominant terms outside the leading-edge region are the TSD terms
hrsp and ¢, In the intermediate region, the enthalpy and pressure coefficient
change uniformly from h* to hrsp and c; to ¢, gp, respectively.

In §4, we compare results according to the approximate solutions (22) and (24) with
results from numerical simulations using equations (1). The TSD problem provides
the similarity parameters (12) that may govern the flow problem and these are used in
the present work as guiding parameters for studying the various cases. We find good
agreement between the approximate solutions and the results from the numerical
simulations. Moreover, flow cases characterized by the same similarity parameters
show a qualitative self-similar behaviour. It should be pointed out, however, that the
similarity parameters (12) result from an asymptotic solution of the problem and not
from the full nonlinear flow behaviour. Therefore, some differences are expected in
the comparison between the asymptotic solutions based on the TSD problem and
those of (1). Specifically, these differences can be found in the location of shock
waves along the airfoil’s chord and may be related to the small entropy production
behind the shock waves that exists in the solutions of (1) and is neglected in the TSD
problem. Shock wave locations of the self-similar cases can differ by up to 10% of
the airfoil’s chord. A similar difficulty can be seen in comparing solutions of the TSD
problem for a perfect gas with solutions of the Euler equations (see, for example,
Cole & Cook 1986, pp. 312-320).

It should also be clarified that the asymptotic solution (24) contains an error of
O(e*>,|1 — M2 ). This error is greater than O(e). It is also much greater than the
error typically found in the asymptotic solutions for the perfect gas flow, which is
0(e*?) < O(e) (see Cole & Cook 1986 and Rusak 1993). For example, for airfoils with
€ = 0.12 the local error of the asymptotic solution may be on the order of 20%. This
difference becomes more noticeable when we use the self-similar, scaled (magnified)
pressure coefficient ¢, = ¢, /€*3. This parameter may contain an error on the order

of O(e*) which is much greater than the error typically found in the asymptotic
solutions for the perfect gas case, O(e*/?). For example, for airfoils with ¢ = 0.12
the local error in computing the scaled pressure ¢, at points around the maximum
thickness of the airfoil may be on the order of 40-50% (unlike the perfect gas case
where such an error is typically less than 20%). It is expected that the error becomes
smaller as € is reduced. This error indicates the need to develop a second-order theory
for transonic flow of the BZT gases to improve the computational accuracy of the
asymptotic formula, specifically for airfoils with e > 0.1.

3. The TSD equation solver

The TSD problem is described by (11)—(13). It can be shown that the local Mach
number, M|, is given by

M} =1+ €% (=K + 2K 1z — Kadi + §22P10) + - =1+ 7+ (25)
From the definition of y, the modified K—G equation (11) can be written as
X(EIJ?J'C = (Elﬁw (26)

When y > 0, the local flow is supersonic (M; > 1) and from (26) the modified K-G
equation is hyperbolic. On the other hand, when y < 0, the local flow is subsonic
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FIGURE 2. (a) The computational grid points around the airfoil, and (b) a control volume and
nearby grid points, in the TSD solver.

(M; < 1) and the modified K-G equation is elliptic. When y = 0, the local flow is
sonic (M; = 1) and the equation is parabolic. These criteria play an important role
in the numerical scheme for solving the TSD problem for the BZT gases given by
(11)—(13). This mixed-type problem requires a type-sensitive difference scheme, such
as the Murman & Cole (1971) method (see also Cole & Cook 1986), to catch adequate
and relevant solutions of transonic flows of the BZT gases. In every iteration of the
computations and at each computational grid point, a test has to be devised to decide
whether the governing equation at this point is of elliptic, hyperbolic, or mixed type.
Then, an appropriate difference scheme to solve the equation at that point has to be
used.

For numerical consistency, a conservative form of (11) is used to contain the shock
jump relations, i.e.

(—K s + Kr 3 — 5Kads + 5265) . = (h5); - (27)

Note that in the surroundings of the state I',, = A4, = 0 (or K = K, = 0) we find
X,/12 > 0. Therefore, the operator —K ¢z + Kr 2 — K13 /3 + X.d*/12 is typically
convex in terms of ¢5 in this range of upstream conditions. Thus, an extended version
of the Murman & Cole (1971) method may be relevant to numerically solve (27).
The flow domain is divided into a uniform finite difference mesh with equal spacing
Ax and Ay and with grid points labelled by (i, j). The j = 1 line is assigned on
the body surface and the boundary condition in (13) is set on the line j = % (see
figure 2a). From the control volume diagram around a grid point (i, j) (figure 2b), the

finite difference equation at this point is
{ (=K s + Kr s — 3Kt + 52003, o,
(K K@ — KBt 556, LAY
(@) i1y = (85) 210 YAX = 0. (28)

Here the i + % and j+ % indicate the positions of the boundary of the control volume
in terms of the grid numbers in the X- and j-directions, respectively. Several basic
types of difference methods are applied to (28). In the j-direction, the difference of

the velocities between two consecutive grid points is described by a central difference
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method:

(¢y)lj+1/z ¢”+1A~ (bl]’ (qsi)i,jq/z d) A;ZSUI

In the x-direction, the flow may become subsonic, sonic, supersonic, or encounter a
shock wave. Since the flow may change its speed, the type of the TSD equation may
change and, thus, we need to examine the following difference methods:

central difference

(d—) )(C) . ¢l+11 (bl] (q_s )1 a = ¢ ('b’ 1]

X/ .
i+1/2,j AXx ’ Ax

backward difference

(<,Z5x)(3) ¢i,j - (lgifl,j ((,IB )1 B) (]gifl,j — éifz,j’

i+1/2,j = Ax > 1/2,j — AX

and mixed-type difference

- Piv1j— Pi 7 \(S) bi1j— piay
(¢ )l+1/2j = ]Ax ! ) (d’ )1 1/2,j #

3.1. Elliptic type

Equation (11) is elliptic at a point (i, j) when y;; < 0. Following Cole & Cook (1986),
a central difference method is then applied. We use in (28)

7 1(0) 7 1(0) 1
(¢>?)f+1/2,j - (‘pf)i—l/z,]’ ~ Ax (¢)1+1] 201 + i 11)

791\ (C - 1 _ _ _
(sz)g/z,j —( 3):2/21 = 7 (Givrj = bim1) (Pivrs — 2600 + i)

(A%)?
_ _ 1 _ _
(52— (B2 = gy (Boors =20+ Do) { (B = b))’
+ (birry— i) (Bij— bir)) + (B — dir)) ),
1

(@)1, — (91, = a7 (Pivns = Bss) (Pivsy = 26 + B

- T \2 - - 2
X{ (Pirry — hig)” + (Pij — bimry)” }
and
(©) (©) L - T T
(¢ )1]+1/2 (‘f’y)l] 12 = Ay (‘bi,f“ =261+ ‘75"’1'*1) :
We introduce a stability parameter, f,. < 0, for the elliptic-type form of (28):

P1 K4 ((P2)*>+ (P2)(P3)+ (P3)?
f”””'z{_K+KF (Ax> _3A< ((Axv )

2. ((P1) [(P2)2 + (P3)2]
o e
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where P1 = qu-H,j — (i;,;l,j, P2 = éi-%—l,j — qgi,jv and P3 = éi,j — (5,;1,]‘. Therefore, the
elliptic-type form of (28) becomes

f uci,j

(Ax)? (A )’
For an explicit, point-relaxation solution method, we can compute the velocity po-
tential according to

(Pisrj —2¢ij + pirj) — 5 (Pije1 — 2 + ¢ij1) = 0. (30)

fMCl] 1 — -
i + i— A oD i,J + i,j—
_ (AX) (¢ i+1,j ¢ 11) (Aj/)z (('bﬂ]'H ¢’J 1)
bij = (31)
(6~ )
(A%’ (Ay)?
Also, from the boundary condition on the airfoil, (30) becomes
fuc'i,' T T T (]51 i+1 — ¢z In
W (¢i+1,j —2¢;; + ¢i—1,j) A? N AJ S (d’y)i,j_l/z =0 (32)
for j =2, and the velocity potential just above the airfoil at j =2 is
fuci,z T T T ~
) W (Pisiz + dic12) — (A )2 (¢13 (d)f’)is/z Ay)
bip = : (33)

2fuc'i,2 N 1
(A (Ap)

Here, as well as in the following sections, ((E?)w/z = F/(x;). The potential ¢;; on the
airfoil surface is then computed by a second-order linear extrapolation.
For an implicit, line-relaxation solution method (30) becomes

1 - fuci i 1 T 1 T fllct
Wd)i,j—l +2 <(Ax;2 (Aj/)2> ¢ij+ w(bi,j-&-l (Ax )j (isrj + Pizr) s

and the boundary condition on the airfoil surface is

(zfu(’i,z 1 fuCi,Z

_ 1 -
@y w) P2t 35770 = (an?

(34)

_ _ 1 _
(¢i+1,2 + ¢i71,2) + ?37 (%),3/2- (35)

3.2. Hyperbolic type

Similarly, equation (11) is hyperbolic at a point (i, j) when y;; > 0. Following Cole &
Cook (1986), a backward difference method is then applied. We use in (28)

— - B 1 - — —
() i1y = (@015 = 2z (B =261y + Gi2y)
1 _ _ _ _ _
(69)i01n; = (B, = Ax? (1) — bi2j) (bij = 26i1 + Pi2y)

(¢_’3)ff1/2] (4_5%)1 12 (d;i,j - 2&'—1,} + (51'—2,1‘) { (d;i,j - ¢_)i—1,j)2

1
(Ax)®
+ ((l;i,j - Cf_)i—1,j) (Qgi—u - d_)i—Z,j) + (q_si—l,j - qgi—2,j)2 },
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(B) 1 - _ _ _ _

(¢4)L+1/2] (‘1’4)1 12 = (A >2)4 (‘l’fvj - ‘f’i—lf) (¢i»j —2¢i; + ¢i—2»j)
x{ (¢;i,j — d;i—l,j)z + (4_51‘—1,; — (Ei72,j)2 }

Another stability parameter, f,, > 0, for a hyperbolic-type form of (28) is

B P4 K, [ (P3)> 4 (P3)(P5)+ (P5)?
sy = { =K (55) =5 (AP )

2, [ (P4) [(P3)2 + (P5)2]
(a0}

where P4 = ¢;j — $iaj, P5 = ¢i_1; — ¢inj, and P3 is defined in the previous
subsection. So, the hyperbolic-type form of (28) becomes
f ubi,j
(AX)? (A )
For an explicit, point-relaxation solution method, we compute the velocity potential
from
fubl J

21— bi2j) —
G, — (A5 2 B~ i)~ gy
o fubi,j 2
(A%’ (AP
The boundary condition on the airfoil becomes
fltbi,j T T T 1 éi,j-kl — (Ei,j T
(A%)? (fij —2¢ir; + Piaj) — A\ Ay (¢5 )u 1] =0 (39)
for j =2, and the velocity potential just above the airfoil is
fubi2 T N 1 T N
——5 (2012 — Pi22) — —— (biz — (¢3) 5, AF
B (AX)2 ( ) (Aj})z( ( J),3/2 )
2 fubi,2 1
(A%’ (Ap)
The potential ¢;; on the airfoil surface is then computed by a second-order linear

extrapolation.
For an implicit, line-relaxation solution method (37) becomes

fubi,J ) 1 N fusz
T )qu,,l ((M) o) Bt G = ek (<2 + ). @)

and the boundary condition on the airfoil surface is

fubi, 1 T I - fubi, - - 1 -
— ((A}‘c)zz + (A)7)2) bir + A7 biz = (A)_C)ZZ (—2¢i12+ Pi2a) + A7 (¢?)i,3/2' (42)

(d_)i,j —2¢i1;+ ¢_>i—2,/) (¢>u+1 2¢:; + q_si,j—l) =0. (37)

(d_)i,j+1 + <Z§i,j71)
(38)

(40)

3.3. Shock type

We expect a mixed-type form of (11) when a shock wave may appear in the flow. The
flow is supersonic ahead of the shock wave, where a backward difference method is
applied, and is subsonic behind the shock wave, where a central difference method is
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applied. We use in (28)

7\ 7\ L - e r
(¢X)i+l/2,j - (gbx)i—l/Z,j = E (¢i+],j - (pbi.j - d)i—l,j + ¢i—2,j) 5

721(5) 721(5) 1 T T
(@) is10, — (D) 10, = @x? (biv1j = bij — Pimrj + biz2j)

X (qgi-&-l,j — (,Z_si,j + d_)i—],j - q_si—2,j) )
(d_’i)zium (d_)z)z 12) = (A )? 5 ($ivrs = bij = bicry + biag) { (D _d_)’?jf
(¢i+1,j - q_si,j) (‘lgi—l,j - 4_5:‘—2,1‘) + (‘»51‘—1,/' - qgi—lj)z }>
(¢4)1+1/2/ (d_);)i'i)l/z,j (A ) (¢t+11 iy — bi1y + ‘5"—11)
X (¢5i+1,j - qgi,j + ¢i—1,j - qgi—lj) { ((f_’iHJ - QEU)Z + (qgi—l,j - Q{;i—z,j)2 }

Let f,5 be
B P2 +P5 K, ((P2)* 4 (P2)(P5)+ (P5)*
e G R (a3 )
S, ((P2+ P5)[(P2)> + (P5)]
5 ( (a5 )} @

where P2 and PS5 are defined in previous subsections. Therefore, for a mixed-type
form of (28) we have

fusi,j

=L

(AX) (A )
For an explicit, point-relaxation solution method, we can compute the velocity po-
tential at a shock wave point from

_ ({Au;)j ((ﬁl-‘rlj ¢t 11+¢1 2]) (A )

¢i,j - <fu8i,j _ 2 >
(A%’ (Ap)

The boundary condition on the airfoil surface becomes

(qgi+1,j — iy — Pir + d;i—Z,J) (¢u+1 2¢i; + 51,/—1) =0. (44

(d)lj+1 + ¢11 1)

(45)

usi,j T I T I 1 i, i T
(];)_C’)Jz (¢i+1,j —¢ij— i1+ ¢i—2,j) Aj/ (d) JHAy b L — (¢j)[ﬂj_1/2> =0 (406)

for j = 2, and the velocity potential just above the airfoil is
fusio

;8%

(Pirin = biin+ Piaa) — (A (A7) (6i3 = (#5),5,, A7)
bir =

f usi2 1
(Ax)*  (Ay)
The potential ¢;; on the airfoil surface is computed by a second-order linear extrap-
olation.

(47)
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For an implicit, line-relaxation solution method (44) becomes

Loy (Jm =2 Vg o L g
@yt <(A>-c>2 (Ay)2> Pt
= (];u;)lz (q_si+1,j — i1+ qgi—z,j) > (48)

and the boundary condition on the airfoil surface is
fusia 1 ) T -
—5 — —— | it ——5Pi3
<(A>€)2 (ApY’ (ApY’
_ f usi,2
(Ax)’

(is12 — bimip + (]3142,2) + Alj} (‘5?),;3/2' (49)

3.4. Sonic type

At a sonic point where y;; = 0, equation (11) is parabolic. Unlike a shock point,
the flow in the neighbourhood of a sonic point is continuous, subsonic ahead and
supersonic behind it. Thus, a central difference method is used ahead of a sonic point
and a backward difference method behind it. Equation (28) becomes

(¢f)i+1/2,j - (d)«?)i—uz,j =0,
or
(lgi,j-&-l — 2¢—>i,j + qgi,j—l
=2
(A7)
For an explicit, point-relaxation solution method, the velocity potential at this sonic
point is

=0. (50)

T <l§i,j+1 + qgi,jfl

Gy = PO (51)
and the boundary condition on the airfoil is described by
B2 = bis — ($3) 5, A (52)

The potential ¢;; on the airfoil surface is computed by a second-order linear extrapo-
lation.
For an implicit, line-relaxation solution method (50) becomes

Gijo1 — 2¢ij + ije1 =0, (53)
and the boundary condition on the airfoil surface is
d_)i,3 - d—)i,z = (d—)?),‘g/z Ay (54)

3.5. The algorithm of the solution

For a symmetric airfoil at zero angle of attack, a computational domain in the upper
half of the flow field and a rectangular mesh with equal spacing in X and y are used.
Since the disturbances are created by the existence of the airfoil, a study of the size
of the computational domain suggests that the far-field boundary condition, ¢ = 0,
has a small effect on the solution. Therefore, a relatively small computational domain
may be used. For a small control volume, the far-field boundary condition of ¢ at
the inlet, outlet, and upper sections of the domain cannot be fixed. For the continuity
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FIGURE 3. The subsonic case: comparison of (a) pressure coefficient distributions and
(b) specific enthalpy distributions, along a NACAO0006 airfoil.

of the flow, the solution on these computational domain boundaries is extrapolated
from inside the computational domain. The boundary condition along the airfoil uses
the above equations according to the type of equation at the point. A symmetry
condition is imposed along the x-axis ahead of and behind the airfoil.

An explicit, point-relaxation method is used to compute the potential ¢. At the
initial time step, zero values of disturbances are given for the entire computational
domain. Following Cole & Cook (1986), the code evaluates the type of governing
equation at each grid point according to the following criteria:

elliptic point when
hyperbolic point when
sonic point when

shock point when

fueij <0 and fup;; <O,
fm,-’j >0 and fu;,l-’j > 0,
fucij >0 and fup;; <O,
fuerj <0 and fup;; > 0.

After the type of the governing equation is identified at each point, equations (30),
(32) or (37), (39) or (44), (46) or (51), (52) are used to compute the velocity potential
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FIGURE 4. The subsonic case. (a) Comparison of pressure coefficient distributions according to the
Euler solutions and the theoretical composite solutions. (b) Comparison of the similarity rules in
pressure coefficient distributions between the Euler solutions and the TSD solution.

at this point. The updated value of the potential is used for the computation of next
point. The maximum of the absolute change of the potential at each time step in
the entire domain indicates convergence to the steady state. Iterations are repeated
until the maximum of the absolute change is less than 107°. The pressure coefficient
at every point is then computed from the changes of velocity potential according to

) 25T
Cprsp = —26 7 Pis.

4. Numerical studies

The TSD equation solver has been verified in Wang (1998) for several cases by
first studying transonic flow of perfect gas around a NACA airfoil. Then, a mesh
convergence study was conducted with various meshes and computational domain
sizes. Refining the mesh in both the X- and j-directions results in mesh-converged
numerical solutions; however, more computational iterations are needed to achieve
such solutions. Computational domains of various sizes have been studied with non-
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FIGURE 5. The transonic case: comparison of pressure coefficient distributions
along a NACAO0006 airfoil.

reflecting boundary conditions on the outer boundaries (Wang 1998). It is found that
a domain of 3c by 1.5¢ with a 300 by 800 mesh results, after about 40 000 iterations,
in a converged solution and is used for computing the cases discussed in the following
subsections.

All results presented here are computed using the van der Waals equation of state.
The Appendix provides formulas for computing the thermodynamic properties, I', 4,
and X of the van der Waals gas, based on the pressure and density. In the following
examples, a BZT gas with R/c, = 0.02 is used.

In the first examples, we concentrate on the BZT gas with the properties I',, =
Ay, =0 and X, = 16.05 for which p,./p. = 1.0696 and p./p. = 0.735. Subsonic,
transonic, and sonic flows around three NACA airfoils at zero angle of attack with
thickness ratios of 0.12, 0.06, and 0.02 are computed. The TSD solutions in the
outer region are computed using the TSD equation solver. Then, the inner parabola
problem is solved by the Euler solver of Morren (1990). See also Rusak & Wang
(1997) for details of the inner problem solution. Using the TSD solution and the
parabola solution, the composite solutions for the pressure coefficient and the specific
enthalpy are computed according to the analytical formulas (22) and (24). Results of
the composite solution are compared in each case with the numerical solution of the
Euler equations using Morren’s (1990) code.

4.1. Subsonic case

In this case, a similarity parameter K = 4.22 is used. Therefore, we have M., = 0.8175
for the flow around a NACAO0012, M., = 0.9250 for the flow around a NACA0006,
and M., = 0.9805 for the flow around a NACAOQ0002. In all of these cases, the flows
are of subsonic nature. Figure 3(a) shows an example of the details that are needed
to compute the composite solutions for the pressure coefficient along the NACA0006
surface. In this figure, as well as later in figures 3(b), 5, 7 and 13, we present the TSD
solution, the parabola solution for pressure, density, and axial velocity, the common
part, the composite solution, and the Euler solution. It can be seen from figure 3(a)
that the composite solution predicts the Euler solution, specifically near the nose of
the airfoil and the minimum suction point. Solutions deviate a little after the mid-
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FIGURE 6. The transonic case. (a¢) Comparison of pressure coefficient distributions between Euler
solutions and theoretical composite solutions. (b) Comparison of the similarity rules in pressure
coeflicient distributions between Euler solutions and TSD solution.

airfoil position and this may be related to the higher-order effects, of O(e**,1— M2 ),
that are not included in the composite solution.

Figure 3(b) shows an example of the details that are needed to compute the
composite solution for the specific enthalpy along the NACA0006 airfoil surface. It
can be seen that the specific enthalpy also nicely predicts the Euler solution.

Figure 4(a) summarizes the comparison between the composite solutions and the
Euler solutions for the three cases where K = 4.22 and K = K, = 0. The self-similar
behaviour between the flow cases is evident, specifically at the points where ¢, =0
and at the minimum suction point.

In order to demonstrate the self-similarity between the flow cases for K = 4.22,
the Euler solutions for the rescaled pressure coefficient, ¢, = ¢,/ €2/, are presented in

figure 4(b). Also shown in this figure is the TSD result for ¢, = —2¢+. Results show
that in this magnified scale of c,, the TSD result is the dominant term of c,, except
near the leading edge where the parabola solution dominates. As mentioned above,
the deviations from an exact self-similar behaviour between the cases may be due to
second-order nonlinear effects that are neglected in the TSD theory but appear in



Transonic BZT gas flows around thin airfoils 129

o—o Parabolac,

31 o---o Parabola density
+— Parabola axial velocity
»—— Common part ¢,
—— TSDg¢,

2t e Euler ¢,

e——e Composite ¢,

B e T e e = LTt - FU Ry A

-0.1 0.1 0.3 0.5 0.7 0.9 1.1
x/c

FiGURE 7. The sonic case: comparison of pressure coefficient distributions along
a NACAO0006 airfoil.

solutions of (1). These can amount to local relative errors on the order of 20-30%
when the scaled pressure coefficient is computed, specifically when € = 0.12 and near
the point of maximum suction.

4.2. Transonic case

In this case, a similarity parameter K = 1.84 is used. Therefore, we have M., = 0.9250
for the flow around a NACA0012, M., = 0.9681 for the flow around a NACAO0006,
and M, = 0.9916 for the flow around a NACAO0002. In all of these cases, the flows are
of transonic nature with a compression shock wave near the middle of the airfoil’s
chord. Figure 5 shows an example of the details that are needed to compute the
composite solution for the pressure coefficient along the NACAO0006 surface. It can
be seen that the composite solutions predict the flow behaviour near the airfoil’s nose
and trailing edge as well as the appearance of the shock wave at about 40% of the
airfoil’s chord. The composite solution deviates from the numerical Euler solution,
specifically at the shock wave position (deviation of about 6% of the airfoil’s chord)
and around it. This may be related to the small entropy production behind the shock
wave that is not included in the composite, or TSD, solution but appears in the
solution of (1).

Figure 6(a) summarizes the comparison between the composite solutions and the
Euler solutions for the three cases where K = 1.84 and Ky = K, = 0. The self-similar
behaviour between the flow cases is evident, specifically at the points where ¢, = 0.
Again, the deviation in the shock wave positions may be explained by the entropy
production behind the shock wave. Note that this deviation becomes smaller as € is
reduced.

In order to demonstrate the self-similarity between the flow cases for K = 1.84,
the Euler solutions for the rescaled pressure coefficient, ¢, = ¢,/ €2/, are presented in

figure 6(b). Also shown in this figure is the TSD result for ¢, = —2¢+. Results show
that in this magnified scale of c,, the TSD result is the dominant term of c,, except
near the airfoil’s leading edge. The deviations from an exact self-similar behaviour
between the cases may be due to the coupling between the entropy production behind
the shock waves and the second-order nonlinear effects that are both neglected in the



130 C.-W. Wang and Z. Rusak

2 T T T v T
(@)

----- NACA0012 Euler c,
—— NACAO0012 composite ¢,
o===o NACA0006 Euler c,

1 e——e NACAQ006 composite ¢, i
&=-=s NACAQ002 Euler c,

\‘ +—— NACA0002 composite ¢,

Cp 0 J
—1F E
-2 L

-0.1 0.1 0.3 0.5 0.7 0.9 11

RO _
—— TSDg,
----- NACA0012 ¢; .
o===-0 NACA0006 c;

ot K a==-= NACA0002 ¢; .

Cfs ol
2}

4} J
-0.1 0.1 0.3 0.5 0.7 0.9 1.1

FiGURE 8. The sonic case. (¢) Comparison of pressure coefficient distributions between Euler
solutions and theoretical composite solutions. (b) Comparison of the similarity rules in pressure
coeflicient distributions between Euler solutions and TSD solution.

TSD theory but appear in solutions of (1). In computing the scaled pressure, these
may amount together to a local relative error of 30% near the maximum thickness
point of the airfoil.

4.3. Sonic case

In this case, a similarity parameter K = 0.0025 is used. Therefore, we have M, =
0.9999 for the flows around the three NACA airfoils. In all of these cases, the flows
are of sonic nature with a relatively strong tail shock wave at the trailing edge of
the airfoil. Figure 7 shows an example of the details that are needed to compute the
composite solution for the pressure coefficient along the NACAO0006 surface. It can
be seen that the composite solution predicts the Euler solution, specifically near the
nose of the airfoil and the minimum suction level near the trailing edge. The solution
deviates near the middle of the airfoil. This may be related to the higher order effects
of O(e*?) that are not included in the composite, or TSD, solution.

Figure 8(a) summarizes the comparison between the composite solutions and the
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Euler solutions for the three cases where K = Ky = K, = 0. It can be seen that the
solution accuracy improves as € is reduced.

In order to demonstrate the self-similarity between the flow cases for K = 0, the
Euler solutions for the rescaled pressure coefficient, ¢, = cp/€¥>, are presented in

figure 8(b). Also shown in this figure is the TSD result for ¢, = —2¢+. Results show
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that in this magnified scale of c,, the TSD result is the dominant term of ¢,, except
near the airfoil’s leading edge. As in the transonic case, the deviations from an exact
self-similar behaviour between the cases may result from the strong coupling between
the entropy production behind the shock waves and the second-order nonlinear
effects that are both neglected in the TSD theory but appear in the solutions of (1).
In computing the scaled pressure, these may amount together to a local relative error
of about 50% near the leading edge of the airfoil.

4.4. The flow patterns in transonic flow of BZT gases

The computational results presented in the previous subsections are computed for a
BZT gas characterized by I',, = A,, = 0 for which p./p. = 1.07 and v.,/v. = 1.36.
The flow patterns of the above cases are similar to those of a perfect gas in subsonic,
transonic, and sonic flows. However, the critical Mach number of the BZT gas is
much higher than that of perfect gas. Figure 9 shows the pressure coefficients along
a NACAO0012 airfoil in an oncoming flow with M, = 0.85 according to solutions of
(1). The BZT gas flow has not yet encountered any flow discontinuity on the airfoil
as the perfect gas did. It is demonstrated that the BZT gas flow tends to have less
pressure drag at the same M. Similar behaviour was also found by Tarkenton &
Cramer (1993). Actually, the critical Mach number for NACAO0012 at zero angle of
attack is 0.74 when it operates in a perfect gas (see Kuethe & Chow 1986) and it is
0.88 when it operates in a BZT gas at I',, = 4,, = 0.

From all the BZT gas flow cases that are described in the following, it seems that
the flow pattern of a BZT gas changes not only with the flow speed (or M,,), but also
with the values of I',, 4, and X. The values of I', A, 2, p and v in the following
discussion represent the upstream conditions of a BZT flow far ahead of the airfoil. A
map of I, 4 and X in the p/p. vs. v/v. coordinates is shown in figure 10. The whole
area above the saturation curve may be divided into six possible zones by the I' = 0,
A =0 and X = 0 curves. Table 1 shows the signs of I', 4 and X in these six zones.
The circle in figure 10 indicates the intersection state where I’ = A = 0. At this point,
the transonic flow pattern is described by a shock wave on the airfoil (as the results
in §4.3 show). In the interest of expanding knowledge on the possible flow patterns of
BZT gases, nine cases of transonic flows with various far-field pressures and densities
in the neighbourhood of the I' = A4 = 0 state are studied according to solutions (1).
The upstream flow conditions for these cases are indicated by the squares in figure 10.
In all of the cases, R/c, = 0.02, the far-field Mach number M., = 0.97 and the airfoil
is NACAO0012.

In zone I, where I' < 0, 4 > 0 and 2 > 0, a compression shock wave appears
near the mid-chord of the airfoil. A contour plot of the Mach number is shown in
figure 11(a) and for this case the pressure drag coefficient Cp = 0.03.

In zone II, where I' < 0, 4 < 0 and XY > 0, an expansion shock wave is found
near the airfoil’s nose region along with a detached shock wave in front of it (see
figure 11b). For perfect gases, it is well-known that only a supersonic flow can have
a detached shock wave; however, in BZT gas flows, owing to the faster decrease in
speed of sound than in velocity when I' < 0, a supersonic speed zone appears just in
front of the airfoil and creates a detached shock wave. Since a detached shock wave
is usually larger and stronger than any shock wave on the airfoil, a relatively large
computational domain is needed to compute this flow problem. For this flow case,
the pressure drag coefficient is relatively large, Cp = 0.13.

In zone III, where I' < 0, 4 < 0 and 2 < 0, several shock waves are found (see
figure 11c). They include a detached shock wave ahead of the airfoil, an expansion
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FIGURE 12. An expansion shock wave and a compression shock wave on a NACAO0012 airfoil;
Poo/pe = 1.045,0,, /v, = 1.315.

shock wave on the front section of the airfoil, a compression shock wave on the
mid-section of the airfoil, a tail compression shock wave at the trailing edge, and an
expansion wake shock wave behind the airfoil. For this flow case, the pressure drag
coefficient is also relatively large, Cp = 0.17, due to the appearance of several shock
waves.

In zones IV and V, where I' > 0 and X > 0, a compression shock wave appears
near the end of the trailing edge in each case. The Mach number contour plots are
shown in figures 11(d) and 11(e). For these flow cases, the pressure drag coefficient
is also relatively large, Cp = 0.14 for zone IV and Cp = 0.16 for zone V, due to the
appearance of a large shock wave near the airfoil’s trailing edge.

In zone VI, I' > 0, 4 < 0 and 2~ < 0. In the part of region VI near zone III, even
though I' is positive at the far field, it changes its sign locally in the airfoil region
owing to the fact that ¥ < 0. A detached shock wave, an expansion shock wave,
and a compression shock wave are found (see figure 11f). For this flow case, the
pressure drag coefficient is very large, Cp = 0.22, due to the appearance of several
shock waves, specifically, of a strong expansion shock wave.

Far from the state of I' = A4 = 0 in zone VI, when p,/p. = 0.8 and v, /v, = 2.5,
the flow pattern is more like that of a perfect gas, with a strong tail shock wave. For
this flow case (not shown here) the pressure drag coefficient is large, Cp = 0.14.

In summary, it can be seen that in the various near-sonic flow cases, the flow fields
are characterized by the appearance of compression and, in some cases, expansion
shock waves. Therefore, this usually results in large values of the pressure drag
coefficient. It seems that zone (1) provides better conditions for the operation of the
airfoils since the pressure drag is relatively low.

4.5. Expansion shock wave case

Out of the six possible zones described in figure 10 and table 1, we concentrate
here on zone (I). The unique phenomenon of the expansion shock wave in the BZT
gas flow is shown in figure 12. In this case, M., = 0.9999, I',, = —1.09, 4., = 0.72,
and X, = 24.07 for which p,/p. = 1.045 and v, /v. = 1.315. The comparison of the
solutions of the pressure coefficient according to the TSD, composite and Euler solvers
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is shown in figure 13. It can be seen that the TSD solver captures the expansion shock
wave near 10% of the airfoil’s chord and the strength of the compression shock wave
near the trailing edge. Owing to the entropy production behind the expansion shock
wave, the composite solution deviates from the Euler solution after the expansion
shock wave.

5. Conclusions and discussion

Numerical studies of two-dimensional, transonic flows of BZT gases around thin
airfoils have been presented. These computations are guided by a recent asymptotic
theory of Rusak & Wang (1997). A new TSD equation solver has been developed
and provides solutions for the nonlinear BZT gas flow in the outer region around
most of the airfoil. Numerical results of the composite solutions calculated from the
asymptotic formula show agreement with the solutions of the Euler equations. This
agreement demonstrates that the theoretical and numerical approaches support one
another. It also provides clear insight into the special behaviour of the numerical
solutions. The comparison between the solutions demonstrates that, in the leading
order, TSD solutions of BZT gas flows represent the essence of the flow character
computed from the Euler equations, including the appearance of expansion shock
waves. Guided by the asymptotic formula, the computational results also demonstrate
the similarity rules for transonic flow of BZT gases. There are some differences between
the self-similar cases that may be related to the error in the asymptotic solution.

According to the assumptions made in § 2, where I' ~ 0 and 4 ~ 0, it is found that
the asymptotic solution for transonic flow of the BZT gases has a better agreement
with the Euler solution in the region where Ky and K, are of O(1). Figure 14 shows
the range of the region, 1.03 < p/p. < 1.12 and 1.3 < v/v. < 1.5, where the composite
solutions are expected to have a better agreement with the solutions of the Euler
equations. It is a limited range around the I’ = A4 = 0 state.

The discussion on the flow patterns around a NACAO0012 airfoil at transonic
speeds and at various upstream thermodynamic conditions shows that complicated
and non-classical flow structures may appear. It also reveals that operating in the
region around I' = A = 0 results in lower pressure drag and higher critical Mach
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numbers. The results provide important guidelines for future experimental studies on
this subject.

The present work is limited to an inviscid two-dimensional study. From the expe-
rience with perfect gas flows, it is expected that the addition of small viscosity will
only add a nearly constant viscous drag to the pressure drag of the airfoils when the
thickness parameter is above about 5%. Therefore, the present results may apply to
high Reynolds number flows around such profiles. However, for the 2% thickness
airfoils it is expected that the viscous drag is more dominant and the present results
may not provide accurate information on the flow behaviour around such profiles.

Finally, for better results in approximating the BZT gas behaviour in transonic flow,
an analytical study that includes the second- and third-order terms is suggested. This
may help in improving the accuracy of computations using the asymptotic approach,
specifically for airfoils with € > 0.1. Also, the asymptotic theory is limited to the region
around I' = A = 0. Developing extended theories for a wider range of thermodynamic
conditions will help to increase our understanding of the complicated phenomena
in compressible flow of dense gases. The flow pattern study shows that there are
many more non-classical flow phenomena in compressible flow of BZT gases that
are not quite understood and should be explored in the future using a combination
of theoretical, numerical and experimental studies. Further understanding of those
phenomena will provide essential knowledge for future utilization of such flows in
mechanical and aeronautical applications.
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Appendix

We derive here the thermodynamic fundamental derivative, I, the second derivative,
4, and the third derivative, X, for a van der Waals gas. The general form of entropy
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in terms of the pressure, temperature, and density is given by
dT 0 d
ds =c¢,— — o —p.
T oT ), p?
From the van der Waals equation of state,
_ pRT
P= 1 b

Y _ _pR
oT), 1—bp’

dT R dp
s (25)

Integrating this equation with respect to a reference state where p, = p,, and s, = s,
we have

—ap?, (A1)

we have

and so

S — So

s e [(57) (250))

. 2
7, =4 bpaop)(pg +apy) (A2)

The non-dimensional parameters are defined

Here, from (A1)

p P %P5

,5277 ﬁzia &27’ Eszma (A3)
then the entropy equation becomes
=\ 1+R/¢, _
— o 1—b 1
5 =exp (—S i ) = (ﬁ __) <_ +_Of2>- (A4)
Cy 1—bp p+op
Thus, the non-dimensional pressure is
_ = 14+R/c,
B 1+ & _1-—b o
p= ( - ) <p —_> —ap’. (A5)
5 1—>bp

From (A3) and (AS5), we can derive the speed of sound for the van der Waals
equation of state in an isentropic flow as

op RT R
2= | = —— 14+ =) —20p. A6
“= ), (1—bp)2< +> i (A0)
For the speed of sound at the far field, from (A 2), (A 3) and (A 6), we have
ai=’)w[<1+?) <1+R)—2&]=””B, (A7)
Pxo 1—-b Cy Poo

where B is a constant associated with the gas characteristics and is shown in (A7)
inside the square brackets. From (A 3) and (A 5)—(A 7), the non-dimensional speed of

sound is
2 1 ) R
a2~ B [\p(1—hp) ¢

1 - \ R/
= (1= bp) RN —23p)] (A8)
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where
1+a - , R
N = ( 1:“) (1—bp)+R/e <1 + C) = constant.
Since
p Oa p oa or _or o4 _0
T taml T TP Pop ~Pap
we can find the derivatives of the speed of sound with density as follows:
al 4y, (A9)
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o2 | P
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From the definition and (A 8), the fundamental derivative of gasdynamics, I', is

|:NﬁR/(rl.(1 _ Eﬁ)iSiR/cr (1 + 21{) — 30_('[_):| . (A 13)

Cl)

I =
Ba?

At the far field, where p=p=5=a=1 and I',, = 0, we have

() () ()]

Also, from the formula for I', (A 8), and (A 10), the second derivative of gasdynamics
is

R

w
Rl

A= -2 43I + ﬁ_ﬁR/Cvu —bp) R 1+ RY(R_, +4bp ).  (A15)
Ba? 2¢, Cy
For the far-field conditions of I'.,, = 4, = 0, we find
- 1—R/c,
b= —"—
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From (A 10)—(A 12), the third derivative of gasdynamics is
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Also, the general form of internal energy (e) in terms of the pressure, temperature

and density is given by
op dp
de = ¢, dT — — —p| —.
e=c ( T, p> 2
For the van der Waals gas model with a constant ¢,, we find
e—ep=0c(T —Ty,)—ap—ps)
and from the enthalpy definition

h—h,=cT, (;_1)_2a(p_pm)+ RT, <T 1—bpoo_1>.

1—bp, \T,, 1—bp

Using the van der Waals equation (A 1) and the formula for p derived above, we can

compute
_ (Pl —bpoc>”"”
T, S=S0q P 1 —bp

from which the enthalpy as function of density in an isentropic flow s = s,, can be
computed. To be more specific,

T

T. P (1+a)l—b) (A17)

‘ Cy _ I L _ (1—b)
——{(1+oc)(1—b)(1 —1)—-2ap—1)+(14+4a) <1 T —1>}.
(A 18)
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